Some dates might change if necessary based on class needs. Optional textbook is in press and might not be available.

Stanford University School of Engineering
Syllabus, Summer 2014, CEE 107s/207s
Energy Resources: Fuels and Tools

Monday - Thursday, 10:00 a.m. – 10:50 a.m., June 23-August 15
Y2E2, Room 111 (426 Via Ortega)

Instructors:
Emily Grubert Karl Knapp Flavia Grey (TA)
Email: gruberte@stanford.edu knerd@stanford.edu fgrey@stanford.edu

Office hours: During the first week of class, we will ask students when you are available to attend office hours and set the office hours time such that everyone can go to at least some office hours. If there is interest, we might also set up a structured, optional discussion session to address topics in more depth.

Quick References
Course website: TBD. We will discuss in class and make sure everyone has access.
Important dates:
Exam 1: In-class portion, 10 Jul; Take home distributed 9 Jul/due 14 Jul
Field trip: TBD, expected 18 Jul, 10:00 a.m. to 12:00 p.m. (required to pass the class)
Exam 2: In-class portion, 24 Jul; Take home distributed 23 Jul/due 28 Jul
Withdrawal and change of grading basis deadline: 1 Aug
Exam 3: In-class portion, 7 Aug; Take home distributed 6 Aug/due 11 Aug
Final paper: Due by email, 5:00 pm, 15 Aug
We will not be using the official final exam period from 8:30-11:30 a.m. on 15 Aug.

Texts and other resources: There is no required textbook for this class (see page 6).
Prerequisites: Fluency in English, algebra. Students may not receive credit for both CEE 107s/207s and CEE 173A/207, Earthsys 103.
Expected workload: 3 units, or roughly 9 hours of in- and out-of-class work each week. The exact time commitment might vary from week to week. Grading is on a letter or credit/no credit basis.

About the Class
Energy Resources: Fuels and Tools is an introductory survey class focused on the fuels that power the energy systems we interact with most: transportation and electricity. The course presents a comprehensive overview of the following energy resources commonly used in transportation and electricity systems: oil, biomass, natural gas, coal, nuclear fission, hydroelectricity, solar, wind, geothermal, and efficiency.

Lectures and readings will provide a basic understanding of the following for each resource: significance, abundance, technologies for production and use, and the political, economic, regulatory, environmental, and technical factors that affect supply and demand. To supplement readings and lectures there will be a required two-hour field trip to Stanford’s cogeneration plant. Additional field trips may be offered depending on demand.
Who Should Take This Class?
Any one with an interest in energy or environmental issues! In other words, there are no prerequisites for this course other than English fluency and comfort with algebra. Energy systems are a major part of the human experience, but many seemingly basic facts about energy are not intuitive until you have learned them – so don't be worried that you might not have enough background. Alternatively, if you have a lot of background in some topics but not all, this course will help you think about the systems you do not yet understand, and we welcome your expertise and experience as part of our learning community. Please note that if you have taken or are planning to take Energy Resources, which is offered at Stanford each fall as CEE 173A, CEE 207, and Earthsys 103, you cannot receive credit for both this class and Energy Resources due to significant overlap in the topics covered.

What Will You Learn in This Class?
Your teaching team is passionate about energy and energy education in particular, and we have designed this class with the goal of helping you become engaged participants in energy conversations at local through global levels. Specifically, we have three main learning objectives:

1) We hope you will leave this class with basic **energy literacy**, in particular an understanding of where energy comes from, what we do with it, and why all energy decisions involve tradeoffs. We hope to expose you to the major advantages and disadvantages of each of the world’s major existing and emerging fuels and to help guide you to resources that will help you find relevant information on your own.
 a. We will ask you to memorize some information, like terms and acronyms that are critical in the language of energy. We find that having certain information in your head allows you to really engage in energy conversations.
 b. We will ask you to become comfortable with certain types of calculations that are common in the energy world so that you can develop intuition for what kinds of numbers are reasonable for different energy systems and feel that you understand how the numbers are calculated.
 c. We want you to have a sense for what energy systems look like so that you can draw on your own experience of how big a power plant is, what it sounds like, etc. when you think about energy, so we have a mandatory field trip. This experience is meant to give you a physical understanding of the concepts we will discuss in class, which many students think is the most valuable aspect of the course.

2) We hope you will leave this class feeling qualified to **have and defend opinions on energy**, in particular that you will be able to think critically about energy-related statements and decisions. We will discuss all of the major fuels currently in use or under serious consideration for use and challenge you to think critically about how these fuels affect people and the environment in our homeworks and exams, with the goal of enabling you to take what you read in a newspaper, hear in conversation, or learn in class and feel qualified to agree with, challenge, or build on it.

3) We hope you will leave this class **knowing where to go for more information**. With that goal in mind, we will offer many more references than you can possibly look at over the course of eight weeks, and we will not try to lecture on every important detail in class. Instead, we will cover key themes and important basic facts in lecture and evaluations and show you how to uncover additional information on your own.
What Do We Expect from You?

CEE 107s/207s is an engineering class, so we will be using some math. Please don’t let that discourage you – we expect anyone who is comfortable with basic algebra can succeed in this course, and we encourage you to seek assistance from peers, the TA, and the instructors as needed. Come talk to the instructors or send us an email if you have concerns. Graduate students should enroll is 207s; all others should enroll in 107s. The graduate and non-graduate sections will be graded separately, and graduate students will be assigned more difficult homework problems.

The class will cover a lot of material; therefore, we will emphasize qualitative and holistic understanding of energy systems. This will be reflected in the homework and tests, which will be take-home assignments that will allow you to think deeply about the problems. We are more interested in your thought process than your answer and will grade accordingly, though we will ask a lot of questions that have a “right” answer. Also, there are some terms and key facts that one must know to be literate in energy, so we will ask you to do some traditional memorization that we will test with quizzes. Past students consistently report how useful this is after the class, so we think the effort is worth your time. We will not, however, ask you to memorize huge amounts of numerical data – what we focus on is your ability to engage with the energy world, develop intuition, and synthesize issues and analyze decisions in the energy industry.

We will suggest readings and other resources (including videos) that will help you access information about topics we will discuss in class and make them accessible to you online and in the libraries. In keeping with our goal of making energy accessible to you, we will label resources as “basic background,” “homework help,” or “detailed view” to help you decide how to spend your time. Typically, you will probably want to look at the “basic background” and “homework help” resources, though the readings are meant as a resource and are not required. For topics where you have a strong interest, you can look at the “detailed view” documents or save them for later.

We are strongly committed to returning your assignments and exams in a timely fashion (within a week of the due date), and so that we can grade everything and provide you with feedback as quickly as possible, late assignments and exams will not be accepted without official approval from the instructors. We understand emergencies happen – we just ask that you keep us informed of your needs so that we can make the class work for everyone. In particular, if you know that you cannot attend the field trip to Stanford’s power plant from 10 a.m. to 12 p.m. on 18 July, please let us know ASAP so that we can discuss a make-up assignment.

If you want to make audio or video recordings of the class, please get permission from the instructor before doing so.

Detailed Class Processes, Assessment, and Evaluation

Assignments are due at the beginning of lecture on the day that they are due. No late assignments will be accepted without instructor approval. The teaching team works hard to return assignments quickly, but it is your responsibility to make sure that assignments have been received and graded. You must report any ungraded/missing assignments must be reported no later than ten days after the assignments are returned to students.
As noted above, graduate students (enrolled in CEE 207s) and non-graduate students (enrolled in CEE 107s) will be graded separately and will be asked to complete slightly different assignments.

Exams: 45%
You will have three exams, each emphasizing one of the major parts of the fuel cycle (fuel capture, fuel conversion, and fuel use). The exams will be split between an in-class, closed book portion that tests how well you have learned some basic terms and high level facts and a take-home, open book portion that tests your conceptual understanding. No collaboration is allowed for exams. Exams will be given every two weeks, starting in week three, and there is no final exam in this course.

Problem sets: 30%
You will have three problem sets (assigned in weeks without an exam). The problem sets will be similar in format to the exams, and you are encouraged to collaborate with peers. However, each student is expected to turn in an individual assignment, as plagiarism or copying is a serious violation of the Honor Code.

Final paper: 15%
You will write a 3-5 page paper on a topic of your choice that addresses an environmental and/or social benefit or consequence of energy use at the end of the course in place of a final exam. Details will be distributed in class, along with a rubric. Students who anticipate challenges with this assignment for language reasons should contact the instructors so that we can discuss potential alternatives.

Field trip attendance and worksheet: MANDATORY, and 5%
You must attend the class field trip to Stanford’s power plant to pass this class, and you will receive 5% credit for your attendance when you complete a short worksheet that will be handed out at the field trip. If you must miss the field trip, please contact the instructors immediately to arrange an alternative. The field trip is an important contributor to your energy literacy, and we take it very seriously.

Introduction slide: 5%
You will produce a single slide introducing yourself, your interest in energy, and your motivation for taking the class that will be shown as part of a slide show at the end of the first week of class. This is intended to be a low-pressure assignment that will help us target the class to student interest and help you as students get a sense of who your peers are. Details of the assignment will be discussed on the first day of class.

Class participation, enthusiasm, and preparedness: Intangible
While attendance is not strictly required, consistent positive participation, enthusiasm, and preparedness will be taken into consideration if your final numerical grade is near a letter-grade border. Similarly, disruptiveness, rudeness, and disregard for your peers and instructors will be taken into consideration if necessary.
Lectures and Course Map
This course focuses on the human use fuel cycle – that is, how natural resources like coal or the wind are harnessed, processed, and controlled for human use. A basic concept map for the course shows that we will be looking at many different energy resources conform to the basic cycle of fuel capture, fuel conversion, and fuel use that we see with human systems. Throughout, we will be talking about how different fuels affect people and the environment, and we will spend some extra time on those topics at the end of the class once you have background on all of our major fuels.

The likely lecture schedule is below, but we might spend more or less time on a topic based on your interests. Note that each of the topics we will be discussing could be the topic of its own course – so we want to hear what you want to learn! Even if we cannot fit everyone’s deeper interests into lecture, we can point you to resources that will help you go deeper on your own.

Week 1: Introduction to Energy Systems
- Mon: Course introduction; why study energy?
- Tues: What are energy systems?
- Wed: Origins and distribution of energy resources; **Introductory slide due by email at 5 p.m.**
- Thurs: Class slide show – motivations and goals
- Fri: Optional math refresher if you want to review our “tools” for the quarter, 10:00 – 10:50 a.m., room TBD

Week 2: Fuel capture: extraction
- Mon: Drilling (oil and geothermal)
- Tues: Drilling (natural gas)
- Wed: Mining (coal)
- Thurs: Mining (uranium); **Problem set 1 due in hard copy at 10 a.m.**

Week 3: Fuel capture: harnessing
- Mon: Cultivation (biomass)
- Tues: Reservoirs (hydropower and solar)
- Wed: Turbines (wind and ocean); **Exam 1 handed out**
- Thurs: Technical capture (efficiency); **Exam 1 in-class portion (20 min)**

Week 4: Fuel conversion: electricity
- Mon: Thermal power plants; **Exam 1 due in hard copy at 10 a.m.**
DRAFT: Some dates might change if necessary based on class needs. Optional textbook is in press and might not be available.

- Tues: Thermal power plants
- Wed: Nonthermal power plants
- Thurs: Transmission and distribution; **Problem set 2 due in hard copy at 10 a.m.**
- Fri: **Field trip from 10 a.m. to 12 p.m.**

Week 5: Fuel conversion: transportation
- Mon: Fossil refining; **Field trip worksheet due at 10 a.m.**
- Tues: Biomass refining
- Wed: Batteries; **Exam 2 handed out**
- Thurs: Fuel cells; **Exam 2 in-class portion (20 min)**

Week 6: Fuel use: developed world
- Mon: Electricity end uses in the developed world; **Exam 2 due in hard copy at 10 a.m.**
- Tues: Transportation end uses in the developed world
- Wed: Efficiency opportunities in the developed world
- Thurs: Energy regulation and politics in the developed world; **Problem set 3 due in hard copy at 10 a.m.**

Week 7: Fuel use: developing world
- Mon: Energy poverty
- Tues: Electricity in the developing world
- Wed: Transportation in the developing world; **Exam 3 handed out**
- Thurs: Energy trade; **Exam 3 in-class portion (20 min)**

Week 8: Social and environmental implications of energy systems
- Mon: Land use and air pollution; **Exam 3 due in hard copy at 10 a.m.**
- Tues: Climate change
- Wed: Water use and drought
- Thurs: Energy access
- Fri: **Final paper due by email at 5 p.m.**

Texts and Other Resources

The optional class textbook is a digital textbook based on Energy 101, a successful Massively Open Online Course from The University of Texas at Austin. Details to follow; expected price $50.

We will also be publishing selected readings and other resources like videos on the course website. Resources will be tagged as “basic background,” “homework help,” or “detailed view,” and they are not required. You are encouraged to look through the resources and allocate your time as you choose.

The course website is your source for all the informational resources and other information about the class and is found at **TBD**. The course website also includes an online discussion forum where you are encouraged to share interesting articles and questions with your peers. The instructors will monitor the site and bring up especially relevant articles in class.

This course requires access to a computer and the Internet for accessing course resources and completing assignments: if you do not have access to your own computer or Internet connection, 24-hour access to Windows and Macintosh computers is available at the LaIR in Tresidder Union (https://acomp.stanford.edu/tresidder) and Meyer library.
DRAFT: Some dates might change if necessary based on class needs.
Optional textbook is in press and might not be available.

(https://acomp.stanford.edu/meyer) in addition to other locations with more restricted access (https://acomp.stanford.edu).

Accessibility
Students who may need an academic accommodation based on the impact of a disability must initiate the request with the Office of Accessible Education (OAE). Professional staff will evaluate the request with required documentation, recommend reasonable accommodations, and prepare an Accommodation Letter for faculty dated in the current quarter in which the request is being made. Students should contact the OAE as soon as possible since timely notice is needed to coordinate accommodations. The OAE is located at 563 Salvatierra Walk; phone: 723-1066; web site: http://studentaffairs.stanford.edu/oae.

Honor Code
The Honor Code applies to both instructors and students. The text is reproduced below; for more information, see http://studentaffairs.stanford.edu/communitystandards/policy/honor-code. Violations of the Honor Code will be taken extremely seriously in this class.

1. The Honor Code is an undertaking of the students, individually and collectively:
 1. that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;
 2. that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit and letter of the Honor Code.
2. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.
3. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work together to establish optimal conditions for honorable academic work.