EE 278 Statistical Signal Processing

Instructor: Dr. Himanshu Asnani
Course Assistant:
Contact: asnani@stanford.edu

Course Information

Prerequisite: EE178 and linear systems; Fourier transforms at the level of EE102A, EE102B or EE261.

Materials: Review of basic probability and random variables. Random vectors and processes; Convergence and limit theorems; IID, independent increment, Markov, and Gaussian random processes; stationary random processes; autocorrelation and power spectral density; mean square error estimation, detection, filtering and linear estimation.

Grading: 30% Homework, 30% Midterm, 40% Final

Exams

Midterm: Venue Gates B1, time TBD.

Final: The final exam will be on 8/12/16 from 12:15pm-3:15pm. Venue TBD.

Lectures

06/20/2016 - 08/11/2016 Mon, Wed 11:30 AM - 1:20 PM at Gates B1
Office Hour: TBD

EE278: Tentative Lecture Schedule

- Introduction and Review of Basic Probability (1 lecture)
 - Probability Spaces
 - Conditional Probability and Independence
 - Random Variables, Functions, Generation
 - Jointly Distributed Random Variables
 - Scalar detection
- Expectation (2 Lectures)
 - Mean and Variance
 - Markov and Chebychev Inequalites
 - Scalar MSE Estimation
 - Scalar Linear Estimation

- Random Vectors (2 Lectures)
 - Specifying a Random Vector
 - Mean and Covariance Matrix
 - Coloring and Whitening

- Vector Detection and Estimation (2 Lectures)
 - Vector Detection and Reconstruction Problem
 - Detection for Vector AGN Channel
 - Vector Linear Estimation
 - Linear Innovation Sequence and Kalman Filtering

- Convergence and Limit Theorems (2 Lectures)
 - Convergence with Probability 1
 - Convergence in Mean Square
 - Convergence in Probability, WLLN
 - Convergence in Distribution, CLT

- Random Processes (2 Lectures)
 - Definition and Simple Examples
 - Important Classes of Random Processes
 - Random Walk Process
 - Markov Processes
 - Independent Increment, Counting and Poisson Process
 - Mean and Autocorrelation Function
 - Gaussian Random and Gauss-Markov Processes

- Stationary Random Processes (2 Lectures)
 - Strict-Sense and Wide-Sense Stationarity
 - Autocorrelation Function of a Stationary Process
 - Power Spectral Density
 - Continuity and Integration of Random Processes
 - Stationary Ergodic Random Processes

- Random Processes in Linear Systems (2 Lectures)
 - Linear System with Random process Input
 - LTI System with WSS Process Input
 - Process Linear Estimation

- Review (1 Lecture)